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  Abstract  

 
 

In this paper, we proposed Laguerre wavelet based Galerkin method 

for the numerical solution of elliptic problems.  Here, we obtain 

numerical solutions of elliptic problems using modified Laguerre 

wavelets with respect to the given boundary conditions by Galerkin 

method. The numerical results obtained by this method are compared 

with the exact solution and solutions of other existing method.  Some 

of the test problems are considered to demonstrate the applicability 

and validity of the proposed method. 

 

Keywords: 

Galerkin method; 
Laguerre wavelet; 
Elliptic problems. 
  

Author correspondence: 

L. M. Angadi,  

Department of Mathematics, 

Govt. First Grade College, Chikodi – 591201, Karnataka, India  

 

 

1. Introduction 
 

Differential equations play an important role in modelling of physical problems in science and engineering.  

These equations describe a wide range of natural phenomena, such as sound, heat, electrostatics, 

electrodynamics, fluid flow, elasticity and quantum mechanics. These seemingly distinct physical phenomena 

can be formulized similarly in terms of differential equations. While, analytical methods can be used to solve 

some differential equations, many, if not most differential equations, can’t be solved analytically.  In general, 

it is not always possible to obtain exact solution of an arbitrary differential equation. This necessitates either 

discretization of differential equations leading to numerical solutions, or their qualitative study which is 

concerned with deduction of important properties of the solutions without actually solving them.  

Recently, some of the numerical methods are used for the numerical solutions of differential equations. For 

example, Haar wavelet collocation method [4, 5], Legendre wavelet collocation method [6], New wavelet 

Galerkin method [7] etc. 
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Wavelet theory is relatively new and an emerging area in mathematical research. In recent years, wavelets 

have been applied in different fields of science, engineering, and other areas needing numerical 

approximations. Different types of wavelets and approximating functions have been used in numerical 

solutions of differential equations. The concepts for understanding wavelets were provided by Meyer, Mallat, 

Daubechies, and many others. Since then, the number of applications where wavelets have been having 

exploded.  

A promising idea to use wavelets in numerical solution of differential equations is to combine orthonormal 

wavelet bases with variational type methods. The Galerkin method is one of the best known methods for 

finding numerical solutions of differential equations which is invented by Russian mathematician Boris 

Grigoryevich Galerkin [1]. 

The one dimensional elliptic problem is of the form,  

  10,
2

2
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xxfu

x

u
                                                              (1.1) 

With boundary conditions       buau  1,0                                                                                     (1.2) 

where  ba ,,   are constants  and   xf is function of  x  

In this paper, we developed Laguerre wavelet-Galerkin method for the numerical solution of elliptic 

problems. This method is based on expanding the solution by Laguerre wavelets with unknown coefficients. 

The properties of Laguerre wavelets together with the Galerkin method are utilized to evaluate the unknown 

coefficients and then a numerical solution to eq. (1.1) is obtained. 

The organization of the paper is as follows.  In section 2, Preliminaries of Laguerre wavelets are given. 

Method of solution is discussed in section 3.  Numerical Results and Analysis are given in section 4. Finally, 

conclusions of the proposed work are discussed in section 5. 
 

2. Preliminaries of Laguerre wavelets  
 

Wavelets constitute a family of functions constructed from dilation and translation of a single function called 

the mother wavelet. When the dilation parameter a  and the translation parameter b vary continuously, we 

have the following family of continuous wavelets [2]: 
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If we restrict the parameters ba &  to discrete values as 

00,10,00,0 





 ba
k

abnb
k

aa  

we have the following family of discrete wavelets  
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Where  form a wavelet basis for ba , . In particular, when 10&20  ba , then  x
nk ,

  forms an 

orthonormal basis. The Laguerre wavelets    xmnkx
nk

,,,
,

  involve four arguments, k  is 

assumed any positive integer, m  is the degree of the Laguerre polynomials and it is the Normalized time. 

They are defined on the interval  ,0   as 
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Where                   xmL
m

xL
!

1
                                                                                                            (2.2) 

1........3,2,1,0  Mm .  In eq. (2.2) the coefficients are used for orthonormality. Here  xmL  are the 

Laguerre polynomials of degree m  with respect to the weight function   1xW  on the interval  ,0   

and satisfy the following recursive formula       xxLxL  11,10
, 
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For 1&1  nk in (2.1) and (2.2), then the Laguerre wavelets are given by 
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3. Method of solution 
 

Consider the trail solution generated by the Laguerre wavelet to the differential equation with satisfying the 

given boundary conditions which is involving unknown parameter. Accuracy in the solution is increased by 

choosing higher degree Laguerre wavelet polynomials.  

Write the eq. (1.1) as,  

   xfu
x

u
xR 
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2

2

                                                         (3.1) 

where  xR   is the residual of the eq. (1.1). When   0xR  for the exact solution )(xu  only which will 

satisfy the boundary conditions.  

Consider the trail solution )(xu  for eq. (1.1) defined over )1,0[  can be expanded as a modified Laguerre 

wavelet [8] series with satisfying given boundary conditions as follows: 
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where  sjic ',  are unknown coefficients to be determined. Differentiating eq. (3.2) twice w.r.t.  x  and 

substitute in eq. (3.1). To find sjic ',  we choose weight functions as assumed basis elements and integrate 

on boundary values together with the residual to zero [1]. 

               i.e.                  0
1

0
,1  dxxRxj , nj ........,2,1  

then we obtain system of linear equations, on solving this system we get unknown parameters. Then 

substitute these unknowns in the trail solution, numerical solution of eq. (1.1) is obtained. 

Method of implementation  

Here, we applying the above procedure for eq. (1.1) with  0,0,1  ba   the eq.(1.1) can be 

written as, 
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                                                                (3.3) 

with boundary conditions             01,00  uu                                                                             (3.4) 

Choose the trail solution of (3.3) for   3&1  mk  is given by 

                       
     xcxcxcxu 3,13,12,12,11,11,1)(                                           (3.5) 

Here the modified Laguerre wavelet which satisfies the given boundary conditions (3.4) is considered as 

follows:  
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Then the eq. (3.5) becomes           
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Differentiating eq. (3.6) twice w.r.t. x  we get, 
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Using eq. (3.6) and (3.7), then eq. (3.3) can be rewritten as 

)112378
2

336
3

80(
18

2

3,1)3896
2

48(
4

2

2,1)2(221,1  xxxcxxcc - 

                 

)(

)17
2

56
3

63
4

28
5

4(
18

2

3,1

)7
2

19
3

16
4

4(
4

2

2,1)
2

(221,1
xf

xxxxxc

xxxxcxxc

























 

             

)()112361
2

280
3

17
4

28
5

4(
18

2

3,1

)3889
2

29
3

16
4

4(
4

2

2,1)2
2

(221,1

xfxxxxxc

xxxxcxxc





 

             

0)()112361
2

280
3

17
4

28
5

4(
18

2

3,1

)3889
2

29
3

16
4

4(
4

2

2,1)2
2

(221,1





xfxxxxxc

xxxxcxxc

 

              0)( xR  

             Where 

              

)()112361
2

280
3

17
4

28
5

4(
18

2

3,1

)3889
2

29
3

16
4

4(
4

2

2,1)2
2

(221,1)(

xfxxxxxc

xxxxcxxcxR





        (3.8) 

This is the residual. 

 The “weight functions” are the same as the basis functions. Then by the weighted Galerkin method to get 

system of equations, we consider the following: 

    0
1

0
,1  dxxRxj , 3,2,1j                                         (3.9) 

After evaluating eq. (3.9), we have three equations with three unknown coefficients i.e. 
1,1c

, 
2,1c

and 

3,1c
.  By solving this by Gauss Elimination method, we obtain the values of  

1,1c
,

2,1c , 3,1c
. 

Substituting these values in eq. (3.6), we get the numerical solution of eq. (3.3) by wavelet-Galerkin method 

using Laguerre wavelets. 
 

4. Numerical Experiment 
 

 

In this section, we applied Laguerre wavelet based Galerkin method (LWGM) for the numerical solution of 

elliptic problems and also to demonstrate the applicability of the proposed method. 

Test Problem 4.1 Consider [3]   10,1
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With boundary conditions:      01,00  uu                                                                                    (4.2) 

Which has the exact solution  1
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By applying the method explained in the section 3, we obtain the constants 0617.01,1 c , 1028.02,1 c  

and 0884.03,1 c .  Substituting these values in eq. (3.6) we get the numerical solution. Obtained 

numerical solutions are compared with exact and other existing method solution is presented in table 1 and 

figure 1.  

Table 1. Comparison of numerical solutions and exact solution for test problem 4.1. 
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Fig. 1. Comparison of numerical and exact solutions for test problem 4.1. 

Test Problem 4.2 Next, consider [9]  
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With boundary conditions:      01,00  uu                                                                                      (4.4) 

x 

Numerical solution 

Exact solution 
LWGM 

Kostadinova et al. 

Ref[3] 

0.1 0.0264712 0.0276352 0.0265183 

0.2 0.0443444 0.0453501 0.0442945 

0.3 0.0546184 0.0545619 0.0545074 

0.4 0.0583436 0.0566876 0.0582599 

0.5 0.0565875 0.0531447 0.0565906 

0.6 0.0504023 0.0453501 0.0504834 

0.7 0.0407912 0.0347212 0.0408782 

0.8 0.0286751 0.0226751 0.0286795 

0.9 0.0148592 0.0106289 0.0147663 
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and which has the exact solution )sin()( xxu   .   

By applying the method explained in the section 3, we obtain the constants 1947.11,1 c , 4825.22,1 c  and 

8432.43,1 c .  Substituting these values in eq. (3.6), we get the numerical solutions. Obtained numerical 

solutions are compared with exact solution are presented in table 2 and figure 2.  

Table 2. Comparison of exact and approximate solutions for test problem 4.2. 
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Fig. 2. Comparison of numerical and exact solutions for test problem 4.2. 

5. Conclusion  
 

In this paper, we applied the Laguerre wavelet based Galerkin method for the numerical solution of one 

dimensional elliptic problems.  The tables and figures shows that the numerical solutions obtained by 

proposed method agrees with the exact solution. Hence the Laguerre wavelet based Galerkin method is 

effective for solving differential equations. 
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x Numerical solution(LWGM) Exact solution 

0.1 0.3087468 0.3090169 

0.2 0.5925196 0.5877852 

0.3 0.8151813 0.8090169 

0.4 0.9540854 0.9510565 

0.5 0.9982500 1.0000000 

0.6 0.9465312 0.9510565 

0.7 0.7952968 0.8090169 

0.8 0.5811001 0.5877852 

0.9 0.3093530 0.3090169 
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